

Climate change, economic activity, and the role of internet access: Evidence from the Pacific Island region

SEFA AWAWORYI CHURCHILL

TRONG-ANH TRINH

RMIT University

Monash University

ADB-Asian Think Tank Development Forum

26th September 2023

Motivation

- Global implications of climate change:
 - Historical context: temperature increased by $0.4^\circ C$ to $0.8^\circ C$ over the last 100 years
 - Forecast for the next century: Predicted increase between 1.4°C and 5.8°C (Portner et al., 2022)
- Susceptibility of the Pacific Island region to climate change:
 - More vulnerable due to unique geographical, ecological, and socio-economic factors (Hanna and Mclver, 2014; Mclver et al., 2016)
 - Key sectors like agriculture and fisheries feel the immediate impact

Motivation

- Scarcity of empirical research assessing economic impacts of climate change in the Pacific:
 - Major reason: scarcity of relevant data
 - Crucial data like temperature and economic performance over time is not available
 - Many countries lack systems for data collection and storage due to financial and technical limitations
- Could country-level data offer a remedy?
 - Pacific region has vast geographical diversity; climate impacts vary across areas
 - Illustrative case: Examining subnational divergences Papua New Guinea
 » Figure

Research Questions

- Research question 1: What are the effects of warmer temperature on economic activity in the Pacific?
 - Focus on 12 specific Pacific Island countries (Cook Islands, Fiji, Federated States of Micronesia, The Marshall Islands, Nauru, Palau, Papua New Guinea, Solomon Islands, Tonga, Tuvalu, Vanuatu, and Samoa)
 - Using nightlight data to measure economic activity (Hodler and Raschky, 2014; Henderson et al., 2012; Donaldson and Storeygard, 2016)
- Research question 2: How does the internet help against the negative effects of rising temperatures?
 - Better communication during natural disasters
 - Helps people adjust to climate change
- Research question 3: How agriculture is affected by climate change:
 - Most people depend on agriculture and fishing
 - 80% of households rely mainly on agriculture
 - Agriculture is central to the economy

Data Nightlight

- Used as a proxy for economic activity
- Why Nightlight Data?
 - Brighter areas indicate more economic activities
 - Direct correlation with human settlement and industries
 - Useful where traditional economic data is limited or unreliable
- Available datasets:
 - Defense Meteorological Satellite Program (DMSP): Yearly data, available up to 2013
 - Visible Infrared Imaging Radiometer Suite (VIIRS): Monthly data, available from 2012 to present (Chosen for our analysis)
- Measurement:
 - Nightlight measured in log form
 - Higher values = more concentrated economic activities

Data

Weather data

- ERA5 satellite reanalysis data
 - Provided by the European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ECMWF)
 - Widely recognized and used in economic studies (Trinh et al., 2022; Churchill et al., 2022a,b)
- Features of ERA5 data:
 - Hourly estimates of climate variables
 - Resolution: 0.25° longitude x 0.25° latitude
 - Data available since 1979
- Our measures:
 - Air temperature and precipitation (monthly averages)
 - Area-weighted averages for regional data (Kalkuhl and Wenz, 2020; Heyes and Saberian, 2022)

Data Internet data

- Collins Bartholomew's Mobile Coverage Explorer
 - Offers detailed global mobile network coverage (3G and 4G)
 - Data grid: 1km x 1km Papua New Guinea
 - Data from 2011 to present
 - Coverage: Fiji, Micronesia, Palau, Papua New Guinea, Solomon Islands, Tonga, Tuvalu, Vanuatu

Data Agricultural activities

- Utilize Normalized Difference Vegetation Index (NDVI) as a proxy for agricultural activities
 - Landsat program (United States Geological Survey), launched in 1999
 - Data grid: 30 × 30 meters resolution
 - Calculation method (Goldblatt et al., 2020):

$$NDVI = \frac{NIR - red}{NIR + red}$$
(1)

- Index value range: -1 to 1 (Higher values indicate more vegetation)
- Limitation: NDVI data available only for Papua New Guinea

Empirical strategy

(1) Fixed-effects model (Liu et al., 2023):

$$Y_{csmt} = \beta_1 T_{csmt} + \beta_2 P_{csmt} + \alpha_c + \alpha_s + \alpha_t + \epsilon_{i,t}$$
⁽²⁾

where:

- Y_{csmt} is the economic activity for subnational unit s in country c in month m at year t
- T_{csmt} is the average temperature (Celsius), P_{csmt} is the average precipitation
- Country FEs (α_c), subnational areas FEs (α_s), year FEs (α_t)
- clustered standard errors at subnational level

(2) Long-differences model (Burke and Emerick, 2016):

$$\Delta Y_{csmt} = \gamma_1 \Delta T_{csmt} + \gamma_2 \Delta P_{csmt} + \alpha_c + \varepsilon_{i,t}$$
(3)

Effect of Rising Temperatures Using Panel Specification

Dependent variable:	Nightlight (log)		
	OLS	FE model	FE model
	(1)	No control (2)	(3)
Temperature	-0.013***	-0.013***	-0.015***
Rainfall	(0.001)	(0.001)	-4.535***
Subnational FEs		\checkmark	(0.433) ✓
Year FEs		\checkmark	\checkmark
Observations	52,272	52,272	52,272
R-squared	0.336	0.368	0.369
Nightlight mean	0.274	0.274	0.274

Notes: Robust standard errors in parentheses. Standard errors are clustered at the subnational level. ***p<0.01, **p<0.05, *p<0.1.

Effect of Rising Temperatures Using Long Difference Specification

Dependent variable:	Nightlight difference (log)		
	OLS	Fixed-effects model	Fixed-effects model With control
	(1)	(2)	(3)
Temperature difference	-0.165***	-0.129***	-0.124***
	(0.047)	(0.044)	(0.044)
Rainfall difference			1.789
			(3.097)
Country FEs		\checkmark	\checkmark
Observations	484	484	484
R-squared	0.025	0.059	0.059
Nightlight mean	0.240	0.240	0.240

Notes: Robust standard errors in parentheses. Standard errors are clustered at the subnational level. ***p<0.01, **p<0.05, *p<0.1.

Effect of Rising Temperatures on Economic Activities – Internet as Moderator

Dependent variable:	Nightlight (log)			
	Fixed-effects (1)	Long Difference (2)	Fixed-effects (3)	Long Difference (4)
Temperature	-0.040*** (0.008)	-0.252*** (0.066)	-0.006**** (0.001)	-0.014*** (0.005)
Temperature*Internet 3G	0.003*** (0.000)	0.011*** (0.003)	· · ·	(<i>,</i>
Temperature*Internet 4G	. ,	, ,	0.045*** (0.000)	0.041*** (0.001)
Subnational (Country) FEs Year FEs	\checkmark	\checkmark	, v	\checkmark
Control for rainfall Observations R-squared	√ 28,296 0.742	√ 262 0.023	√ 25,056 0.392	√ 193 0.065

Notes: Robust standard errors in parentheses. Standard errors are clustered at the subnational level. ***p<0.01, **p<0.05, *p<0.1.

.

Effect of Rising Temperatures on Economic Activities - Agriculture as Mechanism

Dependent variable:	Nightlight (log)	Agriculture index)	Nightlight (log)
	(1)	(2)	(3)
Temperature	-0.148*** (0.014)	-0.007*** (0.001)	-0.024*** (0.003)
Agriculture index	()		4.025* ^{**} (0.206)
Subnational FEs	\checkmark	\checkmark	 ✓
Year FEs	\checkmark	\checkmark	\checkmark
Control for rainfall	\checkmark	\checkmark	\checkmark
Observations	651	651	651
R-squared	0.937	0.246	0.419

Notes: Robust standard errors in parentheses. Standard errors are clustered at the subnational level. ***p<0.01, **p<0.05, *p<0.1.

Effect of Rising Temperatures on Economic Activities – Robustness checks

Dependent variable:	Nightlight (log)			
	Linear-time trend (1)	+ temperature difference (2)	+ temperature squared (3)	+ temperature interaction term (4)
Temperature	-0.014***	-0.015***	0.419***	0.424***
Temperature difference	(0.001)	0.017***	0.050***	-0.180***
Temperature squared		()	-0.010*** (0.000)	-0.010*** (0.000)
Temperature*Temperature difference			()	0.009***
Subnational FEs Year FEs Control for rainfall Observations R-squared	√ √ 52,272 0.37	√ √ 51,788 0.37	√ √ 51,788 0.393	√ √ 51,788 0.394

Notes: Robust standard errors in parentheses. Standard errors are clustered at the subnational level. ***p < 0.01, **p < 0.05, *p < 0.1.

Effects of temperature on economic activities - Non-linear effects of temperature

Conclusion

- Pacific Island countries especially vulnerable due to their unique characteristics
- Limited studies specifically on Pacific Island region despite its high vulnerability
- Used satellite data to measure nighttime light as a proxy for economic activity at the subnational level
- Findings: Rising temperatures correlate with economic activity decline, with agriculture playing a significant role
- Internet access can reduce the negative impact of rising temperatures on economic activity
- Investment in high-speed internet can aid in climate change adaptation.

Thank you!

References I

- Burke, M. and K. Emerick (2016). Adaptation to climate change: Evidence from us agriculture. American Economic Journal: Economic Policy 8(3), 106–140.
- Churchill, S. A., R. Smyth, and T.-A. Trinh (2022a). Energy poverty, temperature and climate change. *Energy Economics* 114, 106306.
- Churchill, S. A., R. Smyth, and T.-A. Trinh (2022b). The intergenerational impacts of war: Bombings and child labour in vietnam. *The Journal of Development Studies* 58(11), 2290–2306.
- Donaldson, D. and A. Storeygard (2016). The view from above: Applications of satellite data in economics. Journal of Economic Perspectives 30(4), 171–198.
- Goldblatt, R., K. Heilmann, and Y. Vaizman (2020). Can medium-resolution satellite imagery measure economic activity at small geographies? evidence from landsat in vietnam. *The World Bank Economic Review 34*(3), 635–653.
- Hanna, E. G. and L. McIver (2014). Small island states-canaries in the coal mine of climate change and health. In Climate change and global health, pp. 181–192. CABI Wallingford UK.
- Henderson, J. V., A. Storeygard, and D. N. Weil (2012). Measuring economic growth from outer space. American economic review 102(2), 994–1028.
- Heyes, A. and S. Saberian (2022). Hot days, the ability to work and climate resilience: Evidence from a representative sample of 42,152 indian households. *Journal of Development Economics* 155, 102786.
- Hodler, R. and P. A. Raschky (2014). Regional favoritism. The Quarterly Journal of Economics 129(2), 995–1033.
- Kalkuhl, M. and L. Wenz (2020). The impact of climate conditions on economic production. evidence from a global panel of regions. Journal of Environmental Economics and Management 103, 102360.
- Liu, M., Y. Shamdasani, and V. Taraz (2023). Climate change and labor reallocation: Evidence from six decades of the indian census. *American Economic Journal: Economic Policy* 15(2), 395–423.
- McIver, L., R. Kim, A. Woodward, S. Hales, J. Spickett, D. Katscherian, M. Hashizume, Y. Honda, H. Kim, S. Iddings, et al. (2016). Health impacts of climate change in pacific island countries: a regional assessment of vulnerabilities and adaptation priorities. *Environmental health perspectives 124*(11), 1707–1714.
- Portner, H. O., D. C. Roberts, H. Adams, C. Adler, P. Aldunce, E. Ali, R. A. Begum, R. Betts, R. B. Kerr, R. Biesbroek, et al. (2022). Climate change 2022: impacts, adaptation and vulnerability. Technical report, IPCC.
- Trinh, T.-A., S. Appau, S. A. Churchill, and L. Farrell (2022). Temperature shocks and gambling. *Energy Economics* 115, 106406.

Appendix

Subnational variation – Papua New Guinea

Panel B: Average temperature

Appendix 3G coverage – Papua New Guinea

